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1. INTRODUCTION

In recent times there has been much interest in the generation of
spatial grids by numerical methods either by algebraic means or by
solving certain partial differential equations. A collection of
various methods has appeared in [I] and reference may also be made to
the review articles [2], [3], and to various conference proceedings,
[4,5].

This paper is directed to the problem of grid generation in a given
surface by utilizing a set of elliptic equations. The proposed mathe-
matical model has deliberately been made to depend on the formulae of
Gauss, which naturally involve the partial derivatives of the Cartesian
coordinates with respect to the curvilinear coordinates. With the for-
mulae of Gauss as the basis for the proposed elliptic equations it can
be stated with certainty that every smooth surface (second order dif-
ferentiable) must satisfy these equations for any allowable coordinate
system introduced in the surface. Work on these lines was initiated by
Warsi [6-9], and an exclusive article on surface grids [10] may also be
consulted. Various other contributions by using the proposed equations
have been made [11-15]. An important point to be made here is that all
other successful elliptic models for surface grid generation are a
consequence of the proposed equations (Eq. (5)), e.g., Garon and
Camarero [16] and Thomas [17].

The proposed equations (Eqs. (5)) can be used to generate the
Cartesian coordinates as functions of the curvilinear coordinates when
the surface has been specified either analytically or by discrete data
points. Further, the boundary lines in the piece of a surface in which
the coordinates are to be introduced have to be decided in advance.
There is, however, no restriction whether the piece of the surface
forms a simply- or multiply-connected domain.

For arbitrary shaped bodies in which only discrete data points of
the surface are given, it is important to fit a global equation of the
form F(x,y,z)=O so as to express the mean curvature of the surface as a
function of x,y,z. A method which has worked for many cases inclLding
the case of a fuselage is that of overlapping piecewise least-squares
method. Results for some geometrically difficult cases have been pre-
sented in this paper. Also, as an application of the surface grid gen-
eration scheme reported here, the case of monoclinic coordinates has
been considered.

2. NOMENCLATURE

b= n .r,; the coefficients of the second fundamental
form f the surface xv-const.

D = differential operator defined in Eq. (3). .........

2
G = g 9g (g )2 where v,a,B are cyclic. ;odesv giDi cor

. or

".ia



gij= covariant metric components.

gij , contravariant metric components.

- det (g j).

J = Jacobian determinant.

kv) , k() principal curvatures at a point in xv-const.

L = differential operator.

n() = unit normal vector on xv=const.

P,Q - control functions

PY a control functions.

r - rectangular Cartesian coordinates x,y,z.

R = G (kI + kll)

ix = 3D curvilinear coordinates; i = 1,2,3.

x a- 2D curvilinear coordinates.

x a = coordinates in successive transformations; m
(in) 0,1,2,...

Xv) Y(v) ,Z(V) rectangular components of n v)

S1 ag ag B ag- 8); the surface

0= 2 ax axa  ax

Christoffel symbols of the second kind.

k 1 mk a~ a~ ark g gmaglm + agjm. !!U); the space
iJ " axj  axi  axm

Christoffel symbols of the second kind.

x =-g T0a; Beltramian.2 O

V 2 i = rJ; Laplacian.

ar

r -3

axa
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rr
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Other Rules:

1. Repeated lower and upper indices will always imply summation over
the range of index values.

2. Greek indices except v take values (1,2) or (2,3) or (3,1), while
the Latin indices take values 1,2,3.

3. If an index is enclosed in parentheses then the summation conven-
tion (rule 1) is inapplicable.



3. THE MATHEMATICAL MODEL

The mathematical basis of the present formulation along with the
derivation of the elliptic equations for the generation of surface
grids has been discussed in various publications, [6] - [10]. The main

steps have, however, been summarized below.

Usually the main aim of grid generation is to generate the rectan-
gular Cartesian coordinates on the curvilinear parametric coordinates
and hence equations must be obtained in which the curvilinear coor-
dinates appear as the independent variables. Fortunately, the formulae
of Gauss provide a direct access to those quantities in which the sur-
face curvilinear coordinates already appear as the independent vari-
ables. If xL (a assuming only two values) are the surface coordinates
in the surface xV=const., then the formulae of Gauss (cf. [7,18]) are

r T r E +n b ()

-cta a$-,6 aB8

where all quantities appearing in (1) have been defined in Sect. 2.
Inner multiplication of Eq. (1) with G g results in the vector equa-
tion

Dr + G (A(V) x ) = n(V)R, (2)

where

D = g8D G g9 a aa'

R (k(v) + "(V))GR=(I  KII V

=garb aB ,

Ad t x s (3)

For the purpose of Imposing a control on the distribution of coor-
dinates, we set

A (V)x 6 el (4)
2 = g 8'



where P 6 are six arbitrarily specifieg control functions. For a thor-
ough diflussion on the properties of P.. ,nd also on the rlj-
tionship between the Beltramians A2  x and the 3D Laplacians V x
refer to Warsi [10], [19], and to Sect. 5 of this paper.

Substitution of Eq. (4) in Eq. (2) yields a deterministic set of
the grid generation equations. As an example, if x -==const. is the
surface in which one wishes to introduce the coordinates and n, then

the three scalar equations from Eq. (1) are

Lx X(3)R, Ly = Y(3)R, Lz = Z(3)R, (5)

where

L = g2 2 a - 2g12 3 n + g 1 1 ann + Ta + Qa n ,

-1 1 1

P 9 P 2g- 1+
22 11 2g 1 2 P1 2 +1122'

.g P 2 2 + g 2
22 11 2g 1 2 P1 2  P11 2 2 "

Here

11 12 22
g = ge 2/G 3 ' g = -g 1 2 /G3' g 911/G39

G3 = g11g22 - (g12 )
2. (6)
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4. NUMERICAL SOLUTION

Numerical solution of Eqs. (5) has been obtained by using point and
LSOR iterative schemes. The main difference between the grid genera-
tion in a flat space and in a curved surface is due to the appearance

of the forcing terms on the right hand sides of Eqs. (5). The quantity
R has been defined in Eq. (3) and is composed of the principal curva-
tures as local functions of coordinates in a surface. Thus the distin-
guishing features of the body geometry are contained in both R and the
unit normal vector n. Before attempting to solve Eqs. (5) it is impor-
tant to feed the body-geometry information either through R or n. Most
of the computer runs for different shapes reported in Refs. [T0] and
[20] and in this paper have been conducted by prescribing R as a func-
tion of x,y,z. That is, once the equation of a surface either in the
form F(x,y,z)=0 or z=f(x,y) has been established, the principal curva-
ture is expressed as a function of x,y,z by using the formula.

kI + kl (F 2 + F )(2FxFzFx F F2F r- F2 Fzz
y z xx

+ 2FxFy(F2F + FFF - FyFzF - F FzF
x Y z xy x yzz y zxz x zyz

" (F2 + F2)(2F F F - 2F 2F - F2F )]/P 3 F , (7)
x z yzyz Zyy yzz z

where

P2 = F2 + F2 + F2.x y z

As has been noted in [10], if at any point F . 0, then the other form
of Eq. (7) is obtained by interchanging x by y, y by z, and z by x.
The information supplied by (7) is enough, since both G3 and n are cal-
culated by the iterative scheme itself.

Much of the present authors' efforts have been directed toward ob-
taining a numerical scheme which can be used for arbitrarily shaped
surfaces so as to fit a function F(x,y,z)=O based on the given discrete
surface data. Some success has been achieved by using overlap-
piecewise least squares method. In each piece a second degree polyno-
mial in x,y,z has been used. Many known surfaces of second degree,
e.g., ellipsoid, hyperboloids etc. have been duplicated by using this
method. This method has also been used to duplicate an airplane fusel-
age for which discrete x,y,z values were available. Most of the dis-
tortion appears in the canopy part of the fuselage, though the coor-
dinates generated by Eqs. (5) seem to be smooth. Figure 5 demonstrates
the slight distortion in the body geometry and the generated grids on
the fuselage. Figures 1-5 show the capability of the grid generation
equations (Eq. (5)) for some difficult cases in each of which the ana-
lytical form of the equation F(x,y,z)=O is known beforehand. For grids
generated on other known surfaces refer to [10] and [201.

6



5. BELTRAMIAN AND LAPLACIAN APPROACHES

For the purpose of comparison of the surface grid generation model
(Eq. (5)) with the surface grid generation by using the Laplace/Poisson
equations in 3D at a surface, Warsi in [10] and [19] has established
the relevant relationships between the two approaches. This analysis
shows that if the transverse coordinate (the coordinate going out of

the surface) is orthogonal to the surface then the inverted form of the
3D Laplace/Poisson equations and Eqs. (5) are the same. This result

does not demand that the transverse coordinate, besides being orthogon-
al to the surface, should also be a line of zero curvature, [17].

Let E and q be any parametric coordinate in a surface with being
orthogonal to the surface. Then as shown in [10] and [19], the rela-
tions between the Beltramians and the Laplacians are as follows:

A2 =V 2  33
g33

2

A = V2n r33g33

Further
3 (3 ) + (3)

2 33 1 II

and

k (3) + (3 __ __ _ 3_

I I 2g 33 G3 @

2G 3  91 1 922 -(g 12) (8)
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6. COORDINATE CONTROL

The specification of the 6Beltramians in the form of Eq. (4) implies
that the control functions P 6  have been chosen a'priori by the u9er.

In all of the computer runs shown in Figures 1-5, we have taken P a=0
for all the relevant index values. One case in which

p 1 = 0, 2 2 = O ,
aB Pll =  12

2
and P 2 is a specified function of n (refer to [101, Eq. (4.6)) is
shown in Fig. 6 which amply demonstrates the role of the control func-
tions.

Looking at the control functions as coordinate redistribution func-
tions, it has been shown by Warsi [10], [19] that for two6 successive
coordinate systems denoteg as x _1) and x(m), then the P B(m) can be
expressed in terms of P a( 1 ) is

ax 6 x E ax
T ( (in EP -1) n m-1)

ac)(m) T(m)[ cp(m-1) EP(m-1) xa a 3x8

(m-1) aX(m) (M) (9)

where

p6
P -0aB(O) -

for all relevant values of 6,a,8.

8



7. GENERATION OF NON-RECTANGULAR COORDINATES

In some problems it is desirable to generate non-rectangular coor-
dinates on curvilinear coordinates in the same surface. The non-

rectangular coordinates can be spherical, cylinderical or any general

coordinates in the surface. The formulation of the pertinent equations

follows directly in a simple way from Eqs. (5) and has been fully de-
scribed in [], p. 248. Refer also to [13]-[14].

The equations in this case can concisely be written as

Lu = J3A2 u  (10)

J3A

where u (u,v) and

L = a3 2b3 + Cn + j 2 (Pa + Q3) "

For an expanded form of the coefficient a,b,... refer to []. Here

(u,v) are the non-rectangular coordinates while E,n are the desired

coordinates. Figure 7 demonstrates the use of Eq. (10) in obtaining

the coordinates on the surface of an ellipsoid forming a doubly-

connected region.

1'

w.,
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8. MONOCLINIC SURFACE-ORIENTED COORDINATES

A monoclinic coordinate system is that in which the transverse or
the outgoing coordinate from the surface is rectilinear and orthogonal

to the surface; the other two coordinates which are in the surface can
be either orthogonal or non-orthogonal. The capability of surface grid
generation technique discussed in Sections 3 and 4 coupled with the or-

thogonal and rectilinear nature of the third coordinate provides a sim-
ple method of obtaining 3D grids. An immediate use of such coordinates
is in the numerical solution of the Navier-Stokes and the boundary lay-
er equations. Coordinate systems of the type under discussion have
been considered by Hirchel [21] and more recently by Lee [22]. The es-
sential mathematics is simple if use is made of tensor algebra.

( 1 2
Let a coordinate system xa x1= , x2=n) has already been generated

in a given surface by the method described in Sections 3 and 4. We now

consider a neighboring surface parallel to the original surface and
denote the position vector of any point of the parallel surface by r.
Then

r = )= x, + ) nx. (11)

where C is the outgoing coordinate from the original surface on which

S=O, and 0 is an arbitrary (user specified) function of C. Using the
obvious equations

r • n = O, n * n = 0 0nn = 0,

we conclude that 2=n, which is the condition of parallel surfaces.

After some tensor algebra, the geometric quantities of the parallel

surface are, (cf. [22]),

'ga = (1 - K0 )g - {2 - (kI + k I)O}ob a

b = {1 - (kI  + kii)O}ba6 + Koga ,

2 -1K = K{I (kI + k)11)0 + K I (12)

where an overhead bar is used for quantities in the parallel surface

and K is the Gaussian curvature.

Using the preceding algorithm a series of parallel surfaces can be
constructed starting from the data of the given surface. Each surface,starting from the first parallel surface, is obtained algebraically by

10
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using Eqs. (12). Lee [22] has taken

(j) -) kJ-JM

m-1

where J=1 corresponds to C=O, JM=maximum C-steps, and k>1 is a chosen

constant. Figure 8 demonstrates the surfaces for a piece of an ellip-
soidal surface.

11



9. CONCLUSIONS

The proposed set of elliptic equations for the generation of sur-
face meshes (Eqs. (5)) have been solved in many cases. In each case
the resulting coordinate lines are sufficiently smooth. An important

aspect of the algorithm is to specify the equation of the surface
F(x,y,z)=O based on the discrete input data for a surface. This func-
tion must be differentiable at least to the second order for it to be

used on the right hand side terms of Eq. (5). Though we have used a

least squares aproach, our research in this area is still continuing.

12
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z

Figure I. Coord nate~ on a hyperbolic paraboloid.
Z -x- y ; X~ -1xi l<y<1.

Figure 2. Coordinates on th-e surface:

z ,hsin 1- ai ya b'a - b-
h 0.5, O(X i, o~y~l*

z
x

Figure 3. Coordinates on a monkey saddle.
z = -3 3x2 y; -1 :C1 , -l<y I.
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XY

Figure 4. Coordinates on a surface having a saddle point
of the higher type:

z = xy(x 2 -y2), -1<x<1, -1<y<1.

Yxf

Z y y

zz

Figure 5. Three views of coordinates on a fighter plane

fuselage.

Z

Figure 6. Example of coordinate contraction in a
doubly-connected region on the surface of an
ellipsoid.
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Figure 7. Coordinates in the doublyconneted region on
an ellipsoid by using Eqs. (10).

N i~j I; * z

S J=13

//1~~* ~ 1 =.9

Figure 8.Monoclinic coordinates. j - 1 is the basic
ellipsoidal surface in which the coordinates
have been generated through using Eqs. (5),
while J = 5, 9, 13 are the parallel surfaces.
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